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Abstract--This paper describes a three-dimensional, stochastic~robabilistic, efficiency-enhanced dis- 
persion (SPEED) model for the prediction of particle dispersion in turbulent flows. A stochastic procedure 
is used to compute particle-trajectory mean and variance, and a probabilistic procedure is used to compute 
a physical-particle spatial distribution among Eulerian control volumes. An additional Lagrangian equation 
is derived to govern the evolution of particle-trajectory variance. The SPEED model is aimed at tracking 
a relatively small number of particle trajectories, while efficiently reducing computational shot noise in the 
conventional stochastic dispersion model. Two tests cases with available measurements are used to validate 
the effÉciency of the SPEED model. Numerical results of the SPEED model using only 5 x 102 particle 
trajectories are compared with those of the conventional stochastic model using as high as 1.5 x 104 particle 
trajectories. It is found that the SPEED model offers better agreement with the experimental measurements, 
and that the computational efficiency can be substantially enhanced by a factor of 20. ~, 1997 Elsevier 

Science Ltd. All rights reserved. 

INTRODUCTION 

Particle dispersion in turbulent flows finds diverse 
applications in spray drying, particle classification or 
removal from fluids and atomized fuel combustion. 
Most dilute particle-laden turbulent flows are char- 
acterized by the presence of a continuous phase and a 
dispersed phase. For predictions of these dispersed 
particle-laden turbulent flows, two common 
approaches are usually employed : Eulerian-Eulerian 
and Eulerian-Lagrangian. The two approaches differ 
from each other in the handling of the dispersed phase. 
The Eulerian-Eulerian approach treats both the con- 
tinuous and dispersed phases as two interpenetrating 
continua. For the continuous phase, the existing tur- 
bulence closure model for single phase flows can be 
easily extended to two-phase flows by incorporating 
some additional coupling sources due to two-phase 
interactions. Unfortunately, the Eulerian formulation 
of the dispersed phase can not easily account for the 
effects of the particle-size spectrum in multisized two- 
phase flows, let alone account for the trajectory-cross- 
ing effects or interparticle collision or coalescence. 
In contrast, the Lagrangian trajectory model handles 
discrete particle dispersion using a stochastic method 
by tracking a large number of individual particle tra- 
jectories to achieve a stochastically significant solu- 
tion. This model is successful in that it tracks the 
motion of each representative particle parcel; as a 
result, it is extremely straightforward to account for 
such effects as particle-size spectrum, crossing tra- 
jectories, interparticle coalescence and collisions. 

Therefore, the Lagrangian treatment of the dispersed 
phase is receiving more and more attention in pre- 
dicting dilute two-phase flows. 

Since the early work ofYuu et al. [1] and Gosman 
and Ioannides [2], the Lagrangian stochastic model 
has been widely applied to predict a variety of dilute 
turbulent two-phase flows. Many encouraging appli- 
cations have been reported by, among others, Shuen 
et al. [3], Chang and Wu [4], and Berlemont et al. [5] 
for two-dimensional evaporating and nonevaporating 
two-phase flows. In addition, successful applications 
of this model to three-dimensional multiphase flows 
have also been reported by Fiveland and Wessel [6] 
as well as Coimbra et al. [7]. A complete review of the 
stochastic trajectory model can be found in Faeth 
[8], Crowe [9], Sirignano [10], and Elghobashi [1 I], 
among others. Even though the Lagrangian stochastic 
model has been successful in predicting various two- 
phase or multiphase flows, one problem persists due 
to the stochastic procedure used in the conventional 
Lagrangian trajectory computations, that is, when a 
discrete delta-function dispersion is used for the dis- 
tribution of physical particles. Many authors have 
found it necessary to track a "large" number of par- 
ticle trajectories to achieve stochastically significant 
solutions for two-dimensional flows; see Sturgess et 
al. [12], Mostafa et al. [13], Chang and Wu [4], and 
Chen and Pereira [14]. In these computations, a total 
number of particle trajectories, ranging from 3 x 103 
to 105 , were used to achieve stochastically significant 
or invariant solutions. Obviously, for industrial appli- 
cations where three-dimensional computations are 

1727 



1728 X.-Q. CHEN and J. C. F. PEREIRA 

often encountered, it would be unacceptable, even for 
present supercomputers, to track such a large number 
of particle trajectories. Evidently, other alternative 
models have to be sought to bring the existing 
Lagrangian stochastic model into industrial applica- 
tions. These alternative models should keep the advan- 
tages of the existing Lagrangian trajectory model but 
reduce the requirement of tracking a large number of 
particle trajectories. To this end, Litchford and Jeng 
[l 5] developed a stochastic dispersion-width transport 
model, where the dispersion-width is explicitly com- 
puted through the linearized equation of motion using 
the concept of particle-eddy interactions. The appli- 
cation and subsequent improvement of this model 
have been made by Chen and Pereira [16] for turbulent 
evaporating sprays where the effects of turbulence 
anisotropy and artificial particle drift correction have 
been taken into account. However, this model has 
the shortcoming that too many repeated summing 
operations are required to determine the dispersion- 
width. Even though this stochastic dispersion-width 
transport model significantly reduces the number of  
particle trajectories, it requires many repeated sum- 
ming operations to compute the dispersion-width, a 
process which is very time consuming. Moreover, this 
model considers only the dispersion effects in the 
cross-streamwise direction and needs a correction con- 
stant to account for undersampling. To overcome 
these shortcomings of the stochastic dispersion-width 
transport model, the present study is aimed at 
developing a generalized, three-dimensional, Lagran- 
gian trajectory model which keeps the advantages 
of the conventional discrete delta-function model but 
overcomes the deficiency in tracking a "large" number 
of particle trajectories; therefore, computational 
efficiency can be substantially increased. The model 
developed here adopts a combined stochastic-pro- 
babilistic method to describe the turbulent motion of 
discrete particles so that only a small number of par- 
ticle trajectories are required. 

Two test cases of particle-laden turbulent flows are 
used to validate the developed SPEED model, 
Numerical predictions are compared with available 
experimental measurements. The efficiency and accu- 
racy of the model are assessed against the con- 
ventional stochastic model and experimental measure- 
ments. 

STOCHASTIC COMPUTATION OF TRAJECTORY 
MEAN AND VARIANCE 

In the framework of Lagrangian formulation, the 
equation of motion of each of the representative par- 
ticle sizes can be written as 

d Upi ~ " _ U ~ -  Up~ +/~p~ (1 )  

where the subscript p represents the particle phase, i 
the Cartesian components, t time, (.7,. the fluid instan- 

taneous velocity, rp the particle relaxation time, and 
Fp~ an extra force, such as the lift force or gravity 
force. Note that the instantaneous velocity consists of 
two p a r t s  the mean U~ and fluctuating u~ which is 
"seen" by a discrete particle. The continuous-phase 
fluctuating velocity can be determined using an aniso- 
tropic particle dispersion model [14], based on the 
concept of particle-eddy encounters [l, 2]: 

/ ~  
u~ = x / u i "  c~ (2) 

where ~i is a Gaussian random variable having zero 
mean and unity variance and u; 2 is the continuous- 
phase normal stress which can be obtained with a 
turbulence closure model. Note that no summation 
practice is adopted for repeated subscripts in the pre- 
sent study. The fluctuating velocity given by equation 
(2) is fixed in equation (1) within the period of time 
when a particle is interacting with a randomly sampled 
turbulent eddy. The interaction time is determined by 
minimizing two time scales of an eddy-life time and 
eddy-transit time. Details of this particle-eddy 
encounter model can be found elsewhere [2, 3]. The 
relaxation time of a particle in equation (1) is defined 
a s  

ppDp 
• ~ = ~ (3) 

where Pr is the particle density, Dp the particle diam- 
eter, # the fluid viscosity, and.fp the drag correction 
coefficient determined by 

./; = I +0.15Re~ 6~7 (0 < Rep < 1000). (4) 

The relative Reynolds number is defined as 

p V, Dp 
Rep - (5) 

P 

where p is the fluid density and Vr is the relative 
velocity between the two phases, given by 

v, : , / z ( v ; , -   7,)2 (6) 

With available particle velocities, it suffices to deter- 
mine its trajectories by 

xp,(t) = x , , (O)+ Up,( t , )dt ,  (7) 

where Xp~(0) denotes the initial particle position at the 
inlet. In conventional Lagrangian stochastic dis- 
persion models, computed particle trajectories only 
represent a single point in space corresponding to the 
current particle position. In other words, a discrete 
delta-function distribution is employed as the spatial 
distribution of a particle variable, 

q~(x) -- ¢ ( x . ) ~ ( x - x . )  (8) 

where the vector is used here to represent the three 
components for conciseness. Therefore, the dis- 
tribution characterised by equation (8) often requires 
tracking a relatively large number of particle tra- 
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jectories to achieve a stochastically significant solu- 
tion; otherwise, numerical shot-noise occurs in pre- 
dicted particle properties. As a result, two-way 
coupling sources also suffer from this kind of numeri- 
cal shot-noise. The discontinuity or sudden change in 
two-way coupling sources due to the small number 
of particle trajectories will unfavourably affect the 
convergence rate of the overall two-phase iterative 
solution. This is particularly true of relatively dense 
two-phase flows, where two-way coupling effects are 
pronounced. Hence, no matter whether it is from the 
point of view of stochastic significance or from the 
point of view of the overall fast convergence rate, the 
conventional stochastic dispersion model is hopelessly 
inefficient for tracking a relatively large number of 
particle trajectories. The root cause necessitating a 
large number of particle trajectories originates from 
the method used to estimate particle properties and 
two-way coupling sources, that is, the use of a discrete 
delta-function distribution in Lagrangian compu- 
tations. To overcome the deficiency in conventional 
Lagrangian stochastic models, a stochastic-proba- 
bilistic efficiency-enhanced dispersion (SPEED) 
model is developed in the present study. In the SPEED 
model, a conventional Lagrangian stochastic model is 
first used to determine particle-trajectory mean values, 
and then a probabilistic method is employed to give 
the spatial distribution of physical properties in terms 
of a computed particle dispersion variance. The 
probabilistic distribution is governed by a prescribed 
probability density function (PDF). This combined 
stochastic-probabilistic computation can enhance 
computational efficiency in that it requires tracking a 
relatively few number of particle trajectories while 
efficiently reducing numerical shot-noise, which is 
often present in conventional, solely-stochastic dis- 
persion models. Now, the problem is hinged upon the 
determination of particle dispersion variance at each 
Lagrangian time step. In what follows is the derivation 
of an ordinary-differential equation to be used for 
governing the evolution of particle dispersion variance 
along its trajectory. 

Suppose that at each time step a particle-trajectory 
fluctuation due to fluid turbulence is x~,i, whose mean 
value is xpj is given by equation (7). Obviously, the 
particle-trajectory variance is xpi' -', whose derivative 
with respect to time yields 

'~ d x ; ,  dxp7 2%, 2Xp, U;~ (9) 
d~- = -dr- = 

where u;~ represents the particle velocity fluctuation. 
x'pi can be determined by integrating u;~ over time 

x'p,. = Up,(t~)dt,. (10) 
d0 

The derivation of equation (10) is detailed in 
Appendix A. Introducing equation (10) into equation 
(9) and ensemble-averaging it over a large number of 
samples, we have 

it d(x'v~ ) - 2 (u'p~(t)@(t~))dt, (11) 
dl .j0 

where ( )  denotes an ensemble-averaging process, and 
(Upi(t)Upi(tO) represents the correlation of particle 
velocity fluctuations between the time interval of t and 
t,. Evidently, no direct information is available for 
this particle-velocity correlation along its trajectory. 
However, the use of a turbulence closure model 
(namely, the Reynolds-stress model) can provide us 
with the predicted Reynolds stresses of the continuous 
phase, even though particle velocity fluctuations usu- 
ally do not follow those of its carrier phase. Therefore, 
an expression may be derived to relate the velocity- 
fluctuations of the particle phase to the fluid phase ; 
that is 

{tt'pi(t)U'pi(tl) ) = ~p(U~(t)U~(t , ))  (12) 

where (u~(t)u~(t,)) represents the correlation of the 
velocity fluctuations for fluid tracers and ~p accounts 
for the slipping effects between the two phases. In the 
twin-fluid modeling of particleqaden turbulent flows, 
a similar problem exists for the modeling of particle 
turbulent viscosity [17, 18]. Similarly, it follows that 

I 1 Model A 
1 + St  

% 1 + 3 C t ~ k  ModelB 

where Models A and B have been, respectively, 
employed by Rizk and Elghobashi [17] and Adeniji- 
Fashola and Chen [18] to determine particle turbulent 
viscosity in the twin-fluid model. The model constants 
in equation (13) are % = 1.5 and C/~ = 0.85. The 
Stokes number, St, is defined as the ratio of the par- 
ticle relaxation timescale, %, to the characteristic time- 
scale of the flow r~, that is, 

St = ~:~ (14) 
Tf 

where % is given by equation (3). The physical back- 
ground for Model A can be easily examined when a 
particle approaches to a tracer limit. In this context, 
the Stokes number becomes very small and the particle 
will totally follow the fluid motion; as a result, the 
particle fluctuating velocity variance should approach 
that of the fluid tracers. However, the effect of the 
Stokes number on Model B is implicitly accounted for 
through the relative velocity between the two phases. 
Detailed discussion of this model can be found in 
Picart et al. [19]. To determine the fluid velocity cor- 
relation, a Lagrangian autocorrelation function, 
RLi(r), is used. It is defined as 

<.;(t) u~(t + ~)) 
R~.M) - (15) </~/f2 (t)) 

where • = t , - t .  Following Berlemont et al. [201 and 
Zhou and Leschziner [21], we employ a Frenkiel cor- 
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relation function to determine the autocorrelation 
function by 

(16) 

where the integral time scale for each component is 
determined by 

TL~ = 0.235 <u;Z(t)> (17) 
g 

with e, being the dissipation rate of the turbulent kin- 
etic energy, k. When the k-e model is used, usually no 
reliable information is available for the anisotropy of 
turbulence; under these circumstances, the auto- 
correlation function can be simply determined by 

RLI(z) = RL(~) = exp -- 08)  

where TL is a Lagrangian integral timescale, given by 
TL = 0.3 k/e. Introducing equation (15) into equation 
(11), we finally obtain an equation governing the dis- 
persion variance of the particle trajectory, 

d<xp? > _ 2~p<ui2(t) > RL,(z)d~ 
dt jo 

(19) 

which can be integrated, using available continuous- 
phase flow properties, to give the evolution of the 
particle-trajectory variance. This is the fundamental 
equation sought for the SPEED model to determine 
the particle trajectory variance at each Lagrangian 
integral time step. 

PROBABILISTIC COMPUTATION OF PARTICLE 
SPATIAL DISTRIBUTION 

it now becomes possible to determine both the par- 
ticle-trajectory mean value, x w, and its variance, 
(xl,. 2 ). The determination of the variance is aimed at 
providing a spatial distribution, instead of only a sin- 
gle point delta-function distribution, as described by 
equation (8). To perform the spatial distribution, it is 
necessary to prescribe a PDF, f(x),  which is naturally 
not known a priori. This will be discussed later. With 
a given PDF of J(x), the spatial distribution of ~b(xp), 
which is computed at the current mean particle 
position, xp, is given by 

~(x) = I<4,(x0)/(x)dx (20) 
g 

where the integral is performed over an Eulerian con- 
trol volume. Note that (4~(xp)) refers to a particle 
property which is obtained by ensemble averaging of 
all individual particle trajectories crossing the Eul- 
erian control volume. Therefore, 

~ , N-kAtk f~bk (xp)fk (x)dx 

q~(x) = ~, (21) 

where the summation over k represents all the particle 
sizes crossing the Eulerian control volume with M 
being the total number of the particle trajectories. A?~ 
in equation (21) denotes the particle number flowrate 
of the kth particle, and the product of Nk and At, 
stands for the total number of particles in the Eulerian 
control volume in question. Of note is that the spatial 
distribution given by equation (21) is only valid for 
particle number-ensembled properties. For the two- 
way coupling source, however, its spatial distribution 
is given by 

S~(x) = ~ NkAtk S~(Xp)j~(x)dx 
k I 

(22) 

where S~, is determined in Lagrangian-trajectory 
computations in terms of the two-way coupling 
expressions [14, 22]. 

It is now clear that the spatial distribution of a 
particle property of a two-way coupling source can be 
easily carried out with resort to equations (21) and 
(22), if the probability density function, f(x),  has been 
prescribed or is experimentally known. In their sen- 
sitivity study of various PDF shapes on a dispersion- 
width transport model, Litchford and Jeng [23] found 
that given an appropriate dispersion-width, the par- 
ticle spatial distribution is not very sensitive to the 
shape of the PDF, and that slightly better results are 
achieved with a Gaussian PDF. Therefore, the Gaus- 
sian distribution is used. Expressed as a product of 
its three components, the three-dimensional Gaussian 
PDF can be written as 

3 1  f (Xi ~ip ~ ]i) 
J'(x) = ~ - - e x p  _ -  (23) 

,= %/2~a~, k 

where %, is the standard deviation of the particle 
trajectory fluctuations, given by 

%, = (x;.2),.2. (24) 

In accordance with its definition, the probability 
distribution function of the/-component reads 

f " ' / f (  )d F(xi) = xg xi 

=f" ' -exp  ( x , - xp , )2 ] .  
V72_2 lax ,  (25) 
20"p/ J 

from which the three-dimensional probability dis- 
tribution function can be determined. Hence, the spa- 
tial distribution of an ensemble-averaged particle 
property can be rewritten as 
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Fig. 1. Definition of the integral boundaries. 

i - d i rect ion 

4 ( x )  = 

~ i  ~ 
N~Atk i ~ k ( X p I ' X p  2 'Xp3)  

× fk(x~, xz, x3)dxl dxzdx3 

N, gt, (x,, x2, x3)dxl dx2 dx3 
k ~ l  ¢ l 

(26) 

where the superscripts I and u represent the lower and 
upper boundaries of an Eulerian control volume along 
the/-direction, respectively, as shown in Fig. 1. Intro- 
duction of the probability distribution function of 
equation (25) into equation (26) leads to 

Nk A tk ~bk (x v) [fk (xT) -- f~ (xl)] 
~ = 1  

(27) 

Similarly, the spatial distribution of equation (22) 
for the two-way coupling source can be rewritten as 

S~(x) = NkAtkSg,(xp) [fk(x~)--Fk(x~)] • 
A = I  

(28) 

Of particular note is that the afore-described spatial 
distributions have not accounted for the presence of 
the physical boundaries, which often exist in confined 
particle-laden turbulent flows. To take into account 
the presence of the physical domain, the probability 
distribution function has to be normalized to satisfy 
the requirement that the integral over the physical 
domain is equal to unity, i.e. 

F(xi) 
P(x~) = (29) 

F(X~ 'ax ) -- F(X mi") 

where x~ "a~ and x m~n are, respectively, the two physical 
boundaries corresponding to the /-direction. There- 
fore, P(x~) should be used to substitute F(x~) in equa- 
tions (27) and (28) to account for the presence of the 
physical boundaries. Of course, for problems where 
near-wall particle deposition and reflection are impor- 

tant, appropriate particle-deposition and particle-wall 
interaction models are necessarily employed. Such a 
physical phenomenon can be accounted for by inco- 
rporating into the SPEED model adequate particle- 
deposition and particle-wall interaction models. 

M I S C E L L A N E O U S  R E M A R K S  

When computing the spatial distribution of a physi- 
cal particle, the probability distribution function 
shape is necessarily assumed for each component; 
see equation (25). Following Abramowitz and Stegun 
[24], equation (25) can be estimated by 

5 

F(x,) = 1 -.f(2,) ~ fl,,ff" (30) 
o -  I 

where 2i is defined as 

/~i - -  x i  - -  xp i  

O'pi  

and ~ is defined as 

(31) 

The coefficients in equations (30) and (32) are listed 
in Table 1. Therefore, the probability distribution 
function can be easily determined with equations 
(30)-(32) for each component. To enhance com- 
putational efficiency, the distance along each direction 
can be shortened according to the computed dis- 
persion deviations, api. Usually a distance of three 
times as much as aoi, i.e. 12~I = 3, suffices to estimate 
the integration of equation (25). Finally, the overall 
solution procedure for the SPEED model to compute 
particle-laden turbulent flows can be outlined as 
follows : 

(i) To set to zero all two-way coupling sources in 
the continuous-phase Eulerian equations. 

(ii) To solve the Eulerian equations for the con- 
tinuous phase with coupling sources from the 
Lagrangian trajectory model. 

(iii) To perform Lagrangian trajectory com- 
putations for particle-trajectory mean and 
variance, particle number-ensembled proper- 
ties and two-way coupling sources. 

(iv) To distribute the two-way coupling sources in 
space into Eulerian control volumes for the 
continuous phase. 

(v) To repeat step (ii) to step (iv) until it is 
converged. 

It should be noted that one of the flow configurations 
widely encountered in engineering applications is 
characteristic of flow axisymmetry. To refine the 
numerical grid, the cylindrical coordinates are often 
used. In such a case, some special care should be taken 
in determining the spatial distribution, which becomes 
two-dimensional in cylindrical coordinates even 
though the flow is still three-dimensional in Cartesian 
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Table I. Coefficients of estimating probability distribution function 

0.2316419 0.31938153 -0.35656378 1.78417794 - 1.82125598 1.33027443 

coordinates. The evaluation of the probability dis- 
tribution function for axisymmetric flow con- 
figurations was described elsewhere [16]. 

NUMERICAL RESULTS AND DISCUSSION 

To validate the developed SPEED model, two test 
cases are considered: dispersion of monosized par- 
ticles in a plane mixing layer and in a plane coflowing 
jet. These two tests cases were selected due to the fact 
that both of them have planar flow configurations and 
experimental measurements are available; therefore, 
the present generalized model in Cartesian coor- 
dinates can be directly validated. The flow con- 
figurations are shown in Fig. 2(a,b). 

Test case 1 : particle dispersion in a planar mixin9 layer 
The flow configuration is shown in Fig. 2 (a). 

Detailed experimental measurements were performed 
by Hishida et al. [25]. The experimental data cor- 
responding to the gas-phase velocities of  Ut = 13.1 m 
s-1 and U2 = 4.0 m s-t  and to the particle diameter 
of 42 pm are chosen for the numerical calculations. 
The mass loading ratio of particles to gas in this two- 
phase flow is extremely small; therefore, only one- 
way coupling is necessarily considered. As a result, 
the two-way coupling effects can be isolated from 
the SPEED model. Several conventional Lagrangian 
stochastic dispersion models have been comparatively 
investigated by Chen and Pereira [26], where emphasis 
was placed on the behavior of different particle dis- 
persion models. The continuous gas-phase turbulence 
is modeled using a standard k-e, eddy-viscosity model. 
As can be seen in Fig. 3(a-c), this model can satis- 
factorily predict the axial mean and fluctuating vel- 
ocities, except that the transverse fluctuating velocity 
is overpredicted at the low velocity side and under- 
predicted at the high velocity side close to the centre 
of mixing layer downstream of X = 150 ram, In 
general, the numerical predictions agree reasonably 
well with the experimental measurements of Hishida 
et al. [25]. 

It is widely recognized that the conventional stoch- 
astic discrete delta-function (SDDF) model usually 
requires tracking a relatively large number of particle 
trajectories. To see the effects of the number of tra- 
jectories on predicted particle property, Fig. 4(a-c) 
compares two results obtained with the SDDF model 
using two different numbers of trajectories (5 x 10 z vs 
1.5 x 104). It is evident that the particle fluctuating 
velocities are very sensitive to trajectory numbers. 

However, the particle axial mean velocity is relatively 
insensitive to the number of particle trajectories. This 
kind of sensitivity behavior agrees with our previous 
conclusions drawn for turbulent evaporating sprays 
[14]. It is obvious that the stochastically significant 
solution can only be represented by the SDDF results 
using a total number of 1.5 x 104 trajectories. For the 
sake of convenience, the following SPEED predi- 
cations using model A and model B in equation (13) 
are referred to as the SPEED-A and SPEED-B pre- 
dictions, respectively. 

As stated in the Introduction, the aim of the present 
study is mainly focused on improving numerical effi- 
ciency by using a relatively few particle trajectories in 
a Lagrangian-trajectory model. Shown in Fig. 5(a-c) 
are the profiles of predicted and measured particle 
mean and fluctuating velocities at the five measured 
stations of X = 50, 100, 150, 200 and 250 ram. Note 
that substantially different numbers of particle trajec- 
tories are employed for the SPEED and SDDF 
models. The SPEED model computes only a total 
number of 5 x 102 trajectories whereas the SDDF 
model computes a total number of 1.5 x 100 trajec- 
tories. In general, the SPEED-A and SDDF pre- 
dictions are agreeable with each other, regardless of 
the large difference in trajectory numbers tracked in 
these two models. Note that the profiles of the particle 
mean and fluctuating velocities obtained with the 
SPEED-B are also compared with the SDDF model 
in these figures. It is clearly evident that the SPEED- 
B predictions are much smoother than the SPEED-A 
predictions. However, the particle axial mean velocity 
is slightly overpredicted at the low-velocity side and 
underpredicted at the high-velocity side, which is 
closely associated with the predicted gas-phase trans- 
verse fluctuating velocity ; see Fig. 3(c). Even though 
this tendency can also be observed in the SPEED-A 
predictions downstream of X = 200 mm, the extent is 
smaller than the SPEED-B. This may be attributed to 
the fact that inclusion of a Stokes number, St,  in 
model A can damp out the overpredicted gas-phase 
transverse fluctuating velocity. In addition, it may not 
be appropriate to assess the present model using the 
plane mixing layer which is characterized by large 
organized structures ; see Crowe et al. [27]. However, 
from the point of view of numerical efficiency, the 
SPEED model does require tracking only a very few 
number of particle trajectories while yielding very 
smooth profiles. To more adequately validate the 
developed SPEED model, the second test case of a 
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X fmrn]  

particle-laden turbulent coflowing jet is further 
investigated. 

Test  case 2 : part ic le  dispersion in a coflowin O planar  

.jet 
The flow configuration is shown in Fig. 2(b). 

Detailed descriptions of the test case can be found 
elsewhere [28, 29]. The experimental measurements 
were reported by Borner et al. [30]. The central jet for 
the test case has a mean velocity of 10.75 m s -~ for 
the gas phase and 9.27 m s , for the particle phase. 
The mean velocity of the coflowing airstream around 

the central jet is 8.2 m s -~. The average particle diam- 
eter is 108 #m. To focus on the comparison of tra- 
jectory-model efficiency of the particle phase, only a 
simplified particle-wall interaction model [28] is 
employed. 

Figure 6(a,b) show, respectively, the predicted and 
measured profiles of the axial mean and fluctuating 
velocities of the gas phase. It can be seen that the 
predictions agree well with the measurements. 

To see the effects of the number  of particle tra- 
jectories on particle properties, Fig. 7(a-c) compares 
two results obtained with the SDDF model using two 
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different numbers of particle trajectories (5 x 102 vs 
1.5 x 104). Once again, it is found that the particle 
axial mean velocity is not very sensitive to the number  
of trajectories. However, its fluctuating velocity and 
volume concentration are particularly sensitive to the 
number  of trajectories. Obviously, only the results 
obtained using a total number  of 1.5 x 104 trajectories 
can be regarded as a stochastically significant solution 
and are used for the ensuing discussion. To further 
assess the two suggested expressions relating the par- 
ticle to gas velocity fluctuations in equation (13), the 

two SPEED model predictions are compared with 
those of the SDDF model. 

Shown in Fig. 8(a-c) are the profiles of the axial 
mean velocity, axial fluctuating velocity, and volume 
concentration of the particle phase obtained with the 
SPEED and SDDF models. These figures dem- 
onstrate that the SPEED models can generally achieve 
comparably smooth results as compared with the 
SDDF model, even though the former computes a 
much smaller number  of particle trajectories. Note 
that both SPEED-A and S D D F  models underpredict 
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the particle fluctuating velocity far downstream, and 
have irregular behavior of predicted volume concen- 
tration close to the wall, which has also been observed 
by Azevedo and Pereira [28]. However, these profiles 
have been much improved with the SPEED-B model. 
It is found, surprisingly, that the SPEED-B yields 
much better predictions of particle fluctuating velocity 
and volume concentration than the SDDF model. Of 
particular interest is that the curvature of the particle 

volume concentration, downstream of X = 550 mm, 
is well predicted with the SPEED-B model, and is 
in very good accord with that of  the measurement. 
Moreover, near-wall irregular behavior is no longer 
observed in the SPEED-B predictions. This clearly 
demonstrates that the SPEED-B model can not  only 
give smooth profiles with a very small number of 
particle trajectories, but  also yield more agreeable 
results with experimental measurements. 
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Last, but not of least importance, the efficiency of 
the SPEED and SDDF models is examined in terms 
of the CPU time consumed in each model compu- 
tation. The computations were performed with a DEC 
Alpha 7610 computer at IST, Lisbon. It is found that 
the SPEED model requires about 1.5 and 1.7 rain of 
CPU time to perform each Lagrangian tracking of 
5 x 102 particle trajectories for test case 1 and test case 
2, respectively, while the SDDF model requires about 
27.2 and 30.6 rain of CPU time for each tracking of 
1.5 x 104 trajectories for test case 1 and test case 2, 
respectively. Even though the absolute CPU time 
depends on the integral time step and the com- 
putational domain used, the ratio of the CPU time 
spent by the SPEED model to that spent by the SDDF 
model is clearly demonstrative of the higher com- 
putational efficiency gained with the SPEED model. 
In addition, it is also found that a fewer number of 
two-way coupling iterations are necessary for test case 
2 to achieve final convergence with the SPEED model 
as compared to the SDDF model. This is because the 
SPEED model distributes the sources in terms of the 
probability distribution, thus yielding smooth source 
distribution in Eulerian equations. As a result, the 
convergence rate of two-phase iterations can be sped 
up. It can be inferred that such an advantage of the 

SPEED model should be very helpful for predicting 
relatively dense two-phase flows, where two-way 
coupling effects are pronounced. 

CONCLUDING REMARKS 

An efficient Lagrangian trajectory model (SPEED) 
was developed for computation of particle dispersion 
in turbulent flows. The SPEED model requires track- 
ing a relatively few number of particle trajectories, 
while a noise-free computational solution can be 
achieved by spatially distributing the physical par- 
ticles over the Eulerian control volumes in terms of 
a Lagrangian probabilistic computation. The spatial 
distribution is controlled by a dispersion variance, 
which is, in turn, governed by its own ordinary-differ- 
ential equation. The SPEED model was validated 
against two test cases of particle-laden turbulent flows 
with available experimental measurements. It is found 
that the SPEED model can substantially enhance the 
computational efficiency by a factor of 20, owing to 
the small number of particle trajectories required. 
Therefore, the SPEED model should become a prom- 
ising tool for efficient predictions of particle dispersion 
in turbulent flows of engineering significance. 
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APPENDIX A 

According to its definition, the instantaneous particle pos- 
ition consists of two parts : 

Xpi(t) = ( X p i ( t ) )  +X'w(t ) (AI) 

where the ensemble averaging has been used to denote the 
mean value, and the superscript represents the fluctuating 
value. Similarly, the instantaneous particle velocity can be 
written as 

upi(t) = (Upi(t) ~ 4- u'pi(l ). (A2) 

On the one hand, the particle position can be computed by 

xp~(t) ~ up,(t~)dt~ +xp~(0). (A3) 

Introducing equation (A2) into equation (A3), we have 

xp~(t) = (up,(ti))dtl 4- u'p~(tL)dti +xpi(0). (A4) 

On the other hand, ensemble-averaging of either side of 
equation (A3) yields 

(xp,(t)) = ;£(uv,.(tl))dtj + (xpi(O)). (AS) 

Subtracting equation (A4) from equation (A5) and taking 
equation (A1) into account, we can obtain 
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f't 

X'p,(t) = U'p,(G)dt,  + [xp,(0)- (Xp,(0))]. (A6) 
J ~  

Note that each particle size issuing from the inlet rep- 
resents a parcel of  particles having the same initial 

conditions, such as diameter, velocity and position; as a 
result, the second term in equation (A6) diminishes. There- 
fore we have 

fo x'p,(t) = u 'o , ( t l )d t l .  (A7) 


